Chapter 14: Where was I?

Daniel Dennett, or perhaps one of the representatives from the corpora tion that collectively comprises him, delivered "Where Am l?" to a Chapel Hill Colloquium and received an unprecedented standing ovation. I wasn't there clapping with the rest of the local philosophers; I was on sabbatical leave. Although my colleagues still believe I was living in New York and pursuing a line of philosophic research, actually I was., working secretly for the Department of Defense on a matter closely, related to the Dennett corporation.
Dennett became so preoccupied with questions about his nature unity, and identity that he seemed to forget that the primary purpose of his mission was not to make previously intractable problems in the philosophy of mind even more difficult but to retrieve a fiercely radioactive atomic warhead stuck a mile beneath Tulsa. Dennett tells us that Hamlet, his decerebrate and remotely controlled body, had barely started work o the warhead when communications between it and Yorick, his disembodied brain, broke down. He speculates that Hamlet soon turned to dust and appears neither to know nor to care what became of the warhead. I, as it happens, played an essential role in its ultimate retrieval. Although my role was similar to Dennett's, there were some important differences.
Dennett, or Yorick, during a wakeful interval during the long time when Dennett, or Yorick, slumbered on without any thoroughgoing communication, direct or remote, with a living human body, mainlined a little Brahms. The rectified output from the stereo stylus was fed directly into the auditory nerves. A certain sort of scientist or philosopher would ask,

This essay was first presented to a seminar on the philosophy of mind conducted by Douglas C. Long and Stanley Munsat at the University of North Carolina at Chapel Hill.

..If we can bypass the middle and inner ear and feed directly into the auditory nerve, why can't we bypass that as well and feed directly into whatever the auditory nerve feeds? Indeed, why not bypass that as well and feed directly into the subpersonal information-processing system another step farther in? Or into the next step beyond that?" Some theorists, but presumably not Dennett, would wonder when this process of replacing natural with artificial information-processing devices would reach the ultimate possessor of auditory experience, the real core person, the true seat of the soul. Others would see it rather as a layer-by-layer transformation, from the outside in, of an organic subject of consciousness to an artificial intelligence. The scientist shooting the Brahms piano trio straight into Yorick's auditory nerves, however, actually asked himself a different kind of question. He wondered why they had bothered to disconnect Dennett's ears from his auditory nerves. There would have been advantages, he thought, if we could have used earphones on the ears connected in the normal way to the brain in the vat and had microphones instead of organic ears on the body that ventured deep below Tulsa. The belief that the radiation could damage only brain tissue had been utterly mistaken. Indeed, the organic ears on Hamlet had been the first to go, and the rest of Hamlet was killed off shortly thereafter. With microphones instead of ears on Hamlet, and earphones on the ears connected normally to Yorick, Dennett could get a more realistic stereo rendition of a musical performance than could be obtained merely by mainlining the output from a stereo cartridge tracking a normal stereo recording. If Hamlet sat in the concert hall during a live performance, then every turn of the head would result in slightly different outputs from the earphones back in Houston. This set up would preserve the slight differences in volume and the slight time delay between the two signals that, although not consciously discernible, are so important in fixing the location of a sound source.
A description of this marginal improvement on earphones serves as an analogy in the explanation of some more radical advances made by the NASA technicians. Human eyes, they discovered from the Dennett caper, could not long withstand the fierce radiation from the buried warhead. It would have been better to leave Dennett's eyes attached to his brain as well and mount little television cameras in Hamlet's empty eye sockets. By the time I had entered into the secret mission to retrieve the warhead, the technicians had perfected eyevideos. Eyevideos are to seeing what earphones are to hearing. They not only project an image on the retina, they monitor every movement of the eyeball. For every rapid eye movement, there is a corresponding rapid camera movement; for every twist of the head, there is a corresponding shift in the cameras; and so on.

Seeing by means of eyevideos is in most circumstances indistinguishable from seeing without them. When trying to read really fine print, I noticed a slight loss of acuity; and, until the system was finely tuned, my night vision was rather better with eyevideos than without.
The most amazing simulation devices were for tactile perception. But before I describe skintact, which is to cutaneous and subcutaneous feeling what earphones are to hearing, I should like to describe some experiments that can be performed with eyevideos. The classic experiment with inverting lenses can be repeated simply by mounting the cameras upside down. New experiments of the same general sort can be performed by mounting the cameras in other positions that diverge from the normal. Here are a few: the so-called rabbit mount, with the cameras facing in opposite directions instead of side by side; the rabbit mount with extreme wide angle lenses, so the field of vision is 360 degrees; and the so-called bank or supermarket mount, with the two cameras mounted on opposite walls of the room that the subject occupies. This one takes some getting used to. It is possible, by the way, with this setup to see all the sides of an opaque cube at the same time.
But you want to hear more about skintact. It is a light, porous material worn right next to the skin, and it extends one's tactile range as radio and television extend one's auditory and visual range. When an artificial, hand equipped with skintact transmitters strokes a damp puppy, the, nerves in the skin of a real hand enclosed in receptor skintact are, stimulated in just the way they would be if the real hand that contains them were stroking a damp puppy. When the skintact transmitter touches something warm, the corresponding skin covered with the receptor skin tact does not actually warm up, but the appropriate sensory nerves are stimulated as they would be if warmth were actually present.
In order to retrieve the buried warhead, a robot was sent underground. This robot contained no living cells. It had the same proportions as my body; it was covered with skintact transmitter; its head had microphones and cameras mounted in it that could transmit to earphones and eyevideos. It was jointed just as my body is jointed and could move in most of the ways my body moves. It did not have a mouth or jaws or any mechanism for inhaling and exhaling air or for ingesting food. In place of a mouth, it had a loudspeaker that put forth all the sounds picked up by the microphone in front of my mouth.
There was another marvelous intercommunication system between me and the robot, the Motion and Resistance System, or MARS for short. The MARS membrane is worn over the skintact layer covering the human subject and under the skintact layer worn by the robot. I don't understand all the details of how MARS works, but it isn't difficult to say what it does.

It enables most of the bodily motions of the human to be duplicated exactly and simultaneously by the robot while the various pressures and resistances encountered by the limbs of the robot are duplicated for the corresponding human limbs.
The NASA scientists, instead of splitting me up, as they had split up Dennett, would leave me entire. I would stay back in Houston, all of me, and without suffering any effects from radiation would control a robot on its underground mission. The scientists assumed that, unlike Dennett, I would not be distracted from the primary purpose of the mission by abstruse philosophical questions about my location. Little did they know.
Dennett mentions laboratory workers who handle dangerous materials by operating feedback-controlled mechanical arms and hands. I was to be like them, only I would be operating a feedback-controlled entire body with prosthetic hearing, seeing, and feeling. Although it might be as if I were deep in the tunnel under Tulsa, I would know perfectly well where I really was, safe in the laboratory wearing earphones and evevideos and skintact and MARS membrane, and speaking into a microphone.
It turned out, however, that once I was all rigged up, I could not resist the inclination to locate myself in the location of the robot. Just as Dennett wanted to see his brain, I wanted to see myself swathed in my electronic garments. And just as Dennett had difficulty identifying himself with his brain, I had difficulty identifying myself as the body that moved its head every time the robot moved its head and moved its legs in a walking motion as the robot walked around the laboratory.
Following Dennett's example, I began naming things. I used "Sanford" as Dennett used "Dennett" so that the questions "Where was l?" and "Where was Sanford?" should receive the same answer. My first name, "David," served as a name for the mostly saltwater and carbon compound body being cared for in Houston. My middle name, "Hawley," served for a while as the name of the robot.
The general principle Where Hawley goes, there goes Sanford obviously will not do. The robot that first walked around David while David made walking motions and turned its head as David turned his head is now in a highly classified science museum, and Sanford is not.
Also, the robot could be controlled by some other flesh-and-blood body before, and after, it was controlled by David. If Sanford ever went where Hawley went, I did so only when Hawley was in communication with David or a David replica in at least some of the ways that have been described. Dennett's first principle, Where Hamlet goes, there goes Dennett, needs analogous qualification.
, My attempt to name the robot "Hawley" ran into difficulties when

there turned out to be more than one robot. In Houston there were two full-size robots, one whose main parts were mostly plastic and one whose main parts were mostly metal. They looked just the same from the outside, and, if you know what I mean, they felt just the same from the inside. Neither robot was flown to Tulsa. A third robot, built on a three-fifths scale so it could maneuver more easily in cramped quarters, was there already. That's the one that retrieved the warhead.
Once I was onto the fact that there was more than one robot, the technicians did not always wait for David to fall asleep before switching channels. When Little Hawley returned in triumph from Tulsa, the three of us, or the three of I, would play three-corner catch with the cooperation of three human helpers who would keep the temporarily inactive and unsentient robots from toppling over. I persisted in locating myself in the position of the active, sentient robot and thus had the experience, or at least seemed to have the experience, of spatiotemporally discontinuous travel from one location to another without occupying any of the positions in between.
The principle Where David goes, there goes Sanford was no more appealing for me than Dennett's analogous 11 'here Yorick goes, there goes Dennett. My reasons for rejection were more epistemological than legalistic. I had not seen David since Little Hawley's return from Tulsa and I could not be sure that David still existed. For some reason I never fully understood, quite soon after David began perceiving the external world via skintact, eyevideos, and earphones I was prevented from having the experiences associated with breathing, chewing, swallowing, digesting, and excreting. When Plastic Big Hawley produced articulate speech, I was unsure that the movements of David's diaphragm, larynx, tongue, and lips were still causally involved in its production. The scientists had the technology to tap directly into the appropriate nerves and rectify the neural output, which was itself produced partly in response to artificially rectified input, to transmit the same signals to the receiver connected to the loudspeaker mounted in the head of Plastic Big Hawley. The scientists, indeed, had the technology to bypass any of their fancy electronic devices of causal mediation and substitute even fancier devices that hook up directly with the brain. Suppose, I thought, something went wrong with David; its kidneys broke down or it developed an embolism in a coronary artery. Everything of David except the brain might be dead. For that matter, the brain might be dead too. Since a computer duplicate of Yorick, Dennett's brain, had been manufactured, then so might a computer duplicate of David's brain. I could have become a robot, or a computer, or a robot-computer combination, with no organic parts whatsoever. I would then resemble the Frank Baum character Nick Chopper, better known as the

Tin Woodman, whose transformation from organic to inorganic constitution was a part at a time. In such a case, besides having yet another variation on puzzle cases concerning the persistence of a person through a change of bodies, we would have the materials to construct more variations on puzzle cases concerning one self dividing into several. If one computer duplicate of a brain can be produced, then so can two or three or twenty. While each could control a modified brainless human body like that described by Dennett, each could also control a robot like one of the Hawleys. In either sort of case, body transfer, or robot transfer, or brain transfer, or computer transfer, or whatever you want to call it, could be accomplished without further advances in technology.
I realized that I was tempted by an argument similar to one Arnauld attributes to Descartes.
I can doubt that the human body David, or its brain, exists.
I cannot doubt that I see and hear and feel and think.
Therefore, I who see and hear and so forth cannot be identical to David or its brain; otherwise in doubting their existence I would doubt the existence of myself.
I also realized that David could have been separated into living, functional parts. The eyes with their eyevideos could be connected with the brain down the hall. The limbs, now kept alive with artificial blood, could similarly each have their own room. Whether or not these peripheral systems were still involved in the operation of Plastic Big Hawley, the brain might also have been taken apart, and the information between various subpersonal processing systems could be transferred nearly as quickly as before even if it had to travel much farther in space. And if the brain was gone, replaced with a computer duplicate, the computer parts might be spatially spread out in one of the ways Dennett describes briefly in "Toward a Cognitive Theory of Consciousness" * The spatial contiguity or chemical composition of the various internal information-processing subsystems that together were responsible for my thoughts, actions, and passions seemed irrelevant to my personal location, unity, or identity.
As Dennett first formulated his third principle of personal location, Dennett is wherever he thinks he is, it lends itself to misinterpretation. He doesn't mean that thinking that one is in Chapel Hill would ever be sufficient for actually being in Chapel Hill. He means rather that the location of a person's point of view is the location of the person. Of course people do more than literally just view things. They perceive by other senses; they move. Some of their movements, such as head and eye

* In Brainstorms

movements, directly affect what they see. Many of their movements a positions are continually perceived although with only intermittent co scious attention. The robots in the Hawley family preserved almost all-t4 normal functions and relations between the sense organs and limbs of ° person and the environment the robots found themselves in. And so th spatial unity of a functioning Hawley robot was more than enough t provide Sanford with a sense of having a unified location where the robot was. At the time, the prospect of Hawley's disassembly was more unsettling than the prospect of David's dismemberment.
It was technically possible, I realized, that the inputs and outputs; from David, or the computer duplicate, or whatever, could be divide between Little Hawley, Metal Big Hawley, and Plastic Big Hawley. Or a. single robot could be disassembled although its various parts continue independently to move and to relay perceptual information. I didn't know what would happen to my sense of unity in such a circumstance Would I be able to preserve any sense of myself as a single agent? Under such bizarre circumstances I might be inclined to parody Descartes and say that I was not only in control of these different parts as an admiral commanding a fleet, but that I was very closely united to them, and so to speak so intermingled with them that I seemed to compose with them one whole. Or I might not be up to that task of self-integration. Would' my range of motor and perceptual activity, rather than being more widely distributed in space, be reduced to recollection, meditation, and fantasy as the deliverances from spatially separated and independent sources impressed me only as a booming, buzzing, distracting confusion? I am glad that I was never given a chance to find out.
If we regard light, pressure waves, and so forth as carrying information about the physical world, the point of view is the spatial point where this information is received by a perceiver. Sometimes, as Dennett remarks, one can shift one's point of view back and forth. The laboratory worker remotely manipulating dangerous materials can shift it back and forth from mechanical hands to hands of flesh and blood. The Cinerama viewer can shift it back and forth from a car hurtling down a roller-coaster from which one sees the ground approach with sickening rapidity to a seat inside a theater from which one sees rapidly changing images on a screen. Dennett had been unable to accomplish such a shift between Yorick and Hamlet, and I had been unable to accomplish such a shift between David and Hawley. Try as I might, I could not regard myself as seeing an image projected by eyevideo rather than seeing the scene before the camera that was transmitting to the eyevideo. In my present state of embodiment, analogously, I cannot shift my point of view a couple of inches farther in so that I can focus my attention on a pair of retinal images rather than

on the messy typescript in front of my eyes. Neither can I shift my auditory point of hearing and attend to the vibrations of my eardrums rather than to the sounds outside.
My point of view had been from the location of a robot, and I had been strongly inclined to locate myself at my point of view. Although I regarded the location of a robot as being my location, I was less comfortable regarding myself as identical to a robot. Although I had no clear conception of myself as something other than the robot, I was willing to entertain the possibility that I and a robot, though distinct, occupied the same place at the same time. I was less troubled with discontinuous changes in location than with the idea that whenever the channels were switched I suddenly ceased to be identical with one robot and became identical with another.
When the time for debriefing arrived, Dr. Wechselmann, the scientist in charge, told me he had a big surprise for me and thereby filled me with fear and trepidation. Was David still alive? Was David's brain floating in a vat? Had I been on line with a computer duplicate for days? Were there several computer duplicates, each controlling a robot or each controlling a different modified human body? I did not anticipate the actual surprise. Dr. Wechselmann said that I could witness my own disassembly-that is to say, the disassembly of the Hawley where I was. While I watched in a mirror, I saw the technicians unzip the layers and peel them back. It turned out that I, David Sanford, the living human being, was underneath. David's health had been maintained; and forty-eight hours earlier, during sleep, the cameras had been mounted directly in front of the eyevideos, the microphones directly in front of the earphones, one layer of sensitive skintact directly over the layer next to my skin, and so forth. For a while, when I thought that my location was the location of Plastic Big Hawley, I was really walking around in a very skillfully made and lifelike or, more strictly, lifeless-like, robot costume. The sensations of breathing and eating and so forth were soon returned to me.
Taking off the eyevideo apparatus did not change things visually at all. The fact that for a while, when I thought that David's eyes were in another room, they were actually right behind the cameras, reinforced my inclination to say that the eyevideo system does not interpose any barrier between its user and the physical world. It is like seeing things through a microscope or telescope or with the help of corrective lenses. When one sees by an eyevideo system, one sees what is in focus in front of the lens not some mediating visual object, even though the causal chain between the external object and the visual awareness is more or less altered and complicated by the intervening apparatus.
So here I am, and there is no doubt that I was inside the double-layer

suit when David was inside the suit. But when David was inside a sing]. layer suit, and the other layer covered a robot, my locations remai something of a puzzle. If the puzzle is in any way more informative th the puzzles Dennett poses, Dennett deserves much of the credit. If he ha wholly succeeded in his mission, there would have been no reason for n to embark on mine.



Sanford's story is much closer to being possible than its predecessor. In a recent article Marvin Minsky, founder of the Artificial Intelligence Laboratory at M.I.T., discusses the prospects for this technology:

You don a comfortable jacket lined with sensors and musclelike motors. Each motion of your arm, hand, and fingers is reproduced at another place by mobile, mechanical hands. Light, dextrous, and strong, these hands have their own sensors through which you see and feel what is happening. Using this instrument, you can "work" in another room, in another city, in another country, or on another planet. Your remote presence possesses the strength of a giant or the delicacy of a surgeon. Heat or pain is translated into informative but tolerable sensation. Your dangerous job becomes safe and pleasant
Minsky calls this technology telepresence, a term suggested to him by Pat Gunkel, and describes the advances that have already been made.

Telepresence is not science fiction. We could have a remote-controlled economy by the twenty-first century if we start planning right now. The technical scope of such a project would be no greater than that of designing a new military aircraft.

Some of the components of Sanford's imagined MARS system- already have prototypes-mechanical hands with feedback systems transmitting forces and resistance, variously amplified or moderated-and there is even a step in the direction of eyevideo:

A Philco engineer named Steve Moulton made a nice telepresence eye. He mounted a TV camera atop a building and wore a helmet so that when he moved his head, the camera on top of the building moved, and so did a viewing screen attached to the helmet.
Wearing this helmet, you have the feeling of being on top of the building and looking around Philadelphia. If you "lean over" it's kind of creepy. But the most

sensational thing Moulton did was to put a two-to-one ratio on the neck so that when you turn your head 30 degrees, the mounted eye turns 60 degrees; you feel as if you had a rubber neck, as if you could turn your "head" completely around!

Might the future hold something even stranger in store? Justin Leiber, a philosopher at the University of Houston, develops a more radical variation on these themes in the next selection, an excerpt from his science fiction novel Beyond Rejection.

D. C. D.

No comments: